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Motivation: Large scale systems of ill-posed equations

The inverse problem we are interested in consists of determining an
unknown quantity x ∈ X from the set of data (y0, . . . , yN−1) ∈ Y N ,
where X , Y are Hilbert spaces and N >> 1 is large.

In practical situations, the exact data are not known. Instead, only
approximate measured data yδi ∈ Y are available s.t.∥∥yδi − yi

∥∥ ≤ δi , i = 0, . . . ,N − 1 , (1)

with noise level δi > 0 (notation δ := (δ0, . . . , δN−1)).

The finite set of data is obtained by indirect measurements of the
parameter x , this process being described by the model yi = Fi (x),
where Fi : D(Fi ) ⊂ X → Y are nonlinear ill-posed operators.

The abstract formulation of the inverse problems under consideration
reads: given the data yδi and the levels of noise δi as in (1), find an
approximate solution to the large scale linear system

Fi (x) = yδi , i = 0, . . . ,N − 1 . (2)

Applications: Big data analysis, Machine learning.
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Proposed approach: A projective SGD type method (1/3)

Starting point of our approach: PLW and PLWK methods:

• The PLW method was originally proposed in [A.L. Svaiter, 2018] for
solving nonlinear operator equations.

• Goal: to solve (1), (2) with N = 1 (i.e., A0x = y0, ‖y0 − yδ0 ‖ ≤ δ).

• (xδk ) is generated as follows: at each iteration k , a half space

Hxδ
k

:=
{

z ∈ X | 〈z − xδk ,A
∗
0(yδ0 − A0xδk )〉 ≥ ‖yδ0 − A0xδk ‖

(
‖yδ0 − A0xδk ‖ − δ

)}
separating the current iterate xδk from the solution set A−1

0 (y0) is defined;

I.e., the next iterate xδk+1 is defined as a (relaxed) orthogonal projection

of xδk onto this set.

• PLW method summarized:

xδk+1 := xδk − θk λk A∗0
(
A0xδk − yδ0

)
, (3)

where θk ∈ (0, 2) is a relaxation parameter and λk ≥ 0 gives the exact
orthogonal projection of xδk onto Hxδ

k
.

It corresponds to a Landweber iteration with stepsize defined by (relaxed)
orthogonal projections onto the separating sets Hxδ

k
.
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Proposed approach: A projective SGD type method (2/3)

• The PLWK method was originally proposed in [A.L. Svaiter, 2016] for
solving systems of nonlinear ill-posed equations as in (1), (2), N > 1.

• It consists in coupling the PLW method (3) with the Kaczmarz (cyclic)
strategy and incorporating a bang-bang parameter, i.e.,

xδk+1 := xδk − θk λk ωk A∗[k]

(
A[k]x

δ
k − yδ[k]

)
. (4a)

The parameters θk , λk have the same meaning as in (3), while

ωk = ωk(δ[k], y
δ
[k]) :=

{
1
∥∥A[k]x

δ
k − yδ[k]

∥∥ > τδ[k]

0 otherwise
, (4b)

— τ > 1 is a positive constant.

— [k] := (k mod N) ∈ {0, . . . ,N − 1}.
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Proposed approach: A projective SGD type method (3/3)

Main goals:

• We propose and analyze a projective version of the SGD method, the
projective stochastic-gradient (pSGD) method.

• We modify the SGD, to obtain an efficient method for computing
stable approximate solutions to large scale systems of ill-posed operator
equations (1), (2).

• Differently from [A.L. Svaiter, 2016] we propose here a stochastic
(noncyclic) method based on the iteration (4), which uses an a priori
stopping rule in the case of noisy data.
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Main assumptions

Given:
• some guess x0 ∈ X for the solution of (2).
• a sequence sequence (θk) ∈ R of relaxation parameters.
• a positive constant γ.

Assumptions:

(A1) There exists x? ∈ X s.t. Ai x? = yi , i = 0, . . . ,N − 1;
here yi ∈ R(Ai ) are exact data;

(A2) Ai : X → Y are linear, bounded and ill-posed operators, i.e.,
even if the operator A−1

i : R(Ai )→ X exists, it is not continuous;

(A3) The sequence (θk) satisfies 0 < infk θk and supk θk < 2;

(A4) We choose γ > C := maxi
∥∥Ai

∥∥;

(A5) The stopping index k∗δ = k∗(δ) ∈ N, satisfies

lim
δ→0+

k∗δ =∞ , lim
δ→0+

δ k∗δ = 0.
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Description of the method pSGD

Given x0, (θk) and γ as above, the sequence (xδk ) ∈ X is genarated by
the iteration formula

xδk+1 = xδk − θk λIk A∗Ik (AIk xδk − yδIk ) , k = 0, 1, . . . (5a)

where the stepsize λIk := λIk (xδk ) is given by

λIk (xδk ) :=


∥∥AIk xδk − yδIk

∥∥(∥∥AIk xδk − yδIk
∥∥− δIk )∥∥A∗Ik (AIk xδk − yδIk )

∥∥2 , if
∥∥A∗Ik (AIk xδk − yδIk )

∥∥ > γδIk

0 , otherwise.
(5b)

Remarks:
• In a fixed probability space (Ω,F,P), (Ik) is an independent and
identically distributed sequence of indexes taking values in
{0, . . . ,N − 1}.

• pi = P(Ik = i), 0 < pi < 1,
∑

i pi = 1.

• Additionally to depending on Ik , λIk = λIk (xδk ) also depends on the
realization of I0, . . . , Ik−1 through the random variable xδk .
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Remarks 1/5:

Remark (Exact projections)
The sPLWK method with exact projections is obtained by taking
θk = 1 in (5a).

This amounts to define xδk+1 as the orthogonal projection of xδk onto
HIk ,xδ

k
, where

Hi,x :=
{

z ∈ X | 〈z−x , A∗i (yδi −Aix)〉 ≥
∥∥yδi −Aix

∥∥(∥∥yδi −Aix
∥∥−δi)}

A relaxed variant of the sPLWK method uses θk ∈ (0, 2), so that xδk+1

can be interpreted as a relaxed projection of xδk onto HIk ,xδ
k

.
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Remarks 2/5:

Remark (Separation property)
The solution set A−1

i (yi ) of the i th-equation is contained in Hi,x for
i = 0, . . . ,N − 1 and all x ∈ X .

• Indeed, for each x∗ ∈ A−1
i (yi ) we have

〈x∗ − x ,A∗i (yδi − Aix)〉 = 〈yi − yδi + yδi − Aix , y
δ
i − Aix〉

≥
∥∥yδi − Aix

∥∥(∥∥yδi − Aix
∥∥− δi) .

• Moreover, from the definition of Hi,x follows that x ∈ Hi,x if and only if∥∥yδi − Aix
∥∥ ≤ δi .

These two facts allow us to conclude that the convex set Hi,x separates
A−1
i (yi ) from x ∈ X whenever

∥∥yδi − Aix
∥∥ > δi .
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Remarks: 3/5

Remark (Exact data case)
Notice that A∗i (Aix − yi ) = 0 iff Aix = yi .

1 Thus, (5b) can be written as

λIk :=


∥∥AIk xk − yIk

∥∥2∥∥A∗Ik (AIk xk − yIk )
∥∥2 , if

∥∥AIk xk − yIk
∥∥ > 0

0 , otherwise

• If AIk xk 6= yIk , then xk+1 is given by (5a) with

λIk =
∥∥AIk xk − yIk

∥∥2∥∥A∗Ik (AIk xk − yIk )
∥∥−2

;

• If AIk xk = yIk , then xk+1 = xk and λIk = 0.

Conclusions:
—
∥∥yIk − AIk xk

∥∥ > 0 is sufficient to guarantee that the convex set HIk ,xk

separates A−1
Ik

(yIk ) from xk (see Remark 2).
— For any θk ∈ (0, 2), xk+1 given by (5a) is closer to the solution set
A−1
Ik

(yIk ) than xk .

1Indeed, Aix − yi ∈ R(Ai ) & [A∗i (Aix − yi ) = 0] ⇒ [Aix − yi ∈ N(A∗i ) = R(Ai )
⊥].
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Remarks: 4/5

Remark (Noisy data case)
The sPLWK method in (5) can be interpreted as follows:

• If
∥∥A∗Ik (AIk xδk − yδIk )

∥∥ > γδIk , xδk+1 is given by (5a) with λIk as in
(5b);

• If
∥∥A∗Ik (AIk xδk − yδIk )

∥∥ ≤ γδIk , xδk+1 = xδk and λIk = 0.

Conclusions:
— Due to (A4), inequality

∥∥A∗Ik (AIk xδk − yδIk )
∥∥ > γδIk in (5b) implies∥∥yδIk − AIk xδk

∥∥ > C−1γδIk > δIk .

— From Remark 2/5 follows: HIk ,xδ
k

separates A−1
Ik

(yIk ) from xδk .

— Thus, for any θk ∈ (0, 2), xδk+1 given by (5a) is closer to the solution

set A−1
Ik

(yIk ) than xδk .
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Remarks: 5/5

Remark (Lower bound for the stepsizes λIk )
• In the exact data case, (A2) implies λIk ≥ C−2 whenever∥∥AIk xk − yIk

∥∥ > 0.

In other words, C−2 is a natural lower bound for the stepsizes defined in
(5b), whenever xk is not a solution of AIk x = yIk .

• In the noisy data case, (A2) and (A4) imply λIk ≥ (γ − C )(γC 2)−1,
whenever

∥∥A∗Ik (AIk xδk − yδIk )
∥∥ > γδIk .
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Average “gain” E[‖x∗ − xk+1‖2]− E[‖x∗ − xk‖2]

Lemma (Average gain)
Let (A1), (A2) hold true and (xk) be a sequence generated by the
sPLWK method (5). Then, for any x∗ solution of (2) we have

E
[∥∥x∗− xk+1

∥∥2]−E
[∥∥x∗− xk

∥∥2]
= θk(θk −2)E

[
λI
∥∥AI xk − yI

∥∥2]
, k ≥ 0

(6)

Moreover,

E
[∥∥x∗ − xk+1

∥∥2]− E
[∥∥x∗ − xk

∥∥2] ≤ θk(θk − 2)

C 2
E
[∥∥AI xk − yI

∥∥2]
, k ≥ 0

Proposition (Monotonicity)
Let the assumptions of Lemma 1 hold. Moreover, let (A3) hold. Then,
for any x∗ solution of (2) we have

E[
∥∥x∗ − xk+1

∥∥2
] ≤ E[

∥∥x∗ − xk
∥∥2

] , k = 0, 1, . . . (7)
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Convergence result

Proposition
Let the assumptions of Lemma 1 hold. Moreover, let Assumption (A3)
hold. Then, the following series are summable:

∞∑
k=0

θk(2−θk)E[λI‖AI xk−yI‖2] ,
∞∑
k=0

θk E[λI‖AI xk−yI‖2] ,
∞∑
k=0

E[‖AI xk−yI‖2].

Theorem (Convergence for exact data)
Let assumptions (A1), (A2) ,(A3) hold true. Then, any sequence (xk)
generated by the sPLWK method (5) converges in mean square to x†,

the x0-minimal norm solution of (2): E[
∥∥x† − xk

∥∥2
]→ 0 as k →∞.
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Average “gain” E[
∥∥x∗ − xδk+1

∥∥2
]− E[

∥∥x∗ − xδk
∥∥2

]

Lemma (Average gain)
Let assumptions (A1), (A2) hold true and (xδk ) be a sequence generated
by the sPLWK method (5). Then, for any x∗ solution of (2) it holds

E
[∥∥x∗ − xδk+1

∥∥2]− E
[∥∥x∗ − xδk

∥∥2] ≤
≤ θk(θk − 2)E

[
λI
∥∥AI x

δ
k − yδI

∥∥(∥∥AI x
δ
k − yδI

∥∥− δI )], k = 0, . . . , k∗δ . (8)

Proposition (Monotonicity)
Let the assumptions of Lemma 5 hold. Moreover, let (A3), (A4) hold.
Then

E
[∥∥x∗ − xδk+1

∥∥2] ≤ E
[∥∥x∗ − xδk

∥∥2]
, k = 0, . . . , k∗δ

for any x∗ solution of (2).
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A stability result

Theorem (Stability)
Let (A1), (A2), (A3) hold. Let (δj) = (δj0, . . . , δ

j
N−1) ∈ (R+)N be a

sequence with
∥∥δj∥∥→ 0 as j →∞, and (yδ

j

) = (yδ
j

0 , . . . , y
δj

N−1) ∈ Y N be
a corresponding sequence of noisy data satisfying (1).

Moreover, let (xl)l∈N and (xδ
j

l )
k∗
δ

l=0 be the sequences generated by the
sPLWK method in the case of exact and noisy data respectively; all
sequences are generated using the same (I0, . . . , Ik , . . . ).

Then, for each k ∈ N it holds

lim
j→∞

E
[∥∥xδ

j

k − xk
∥∥2]

= 0 . (9)
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A semi-convergence result

Theorem (Semi-convergence)
Let assumptions (A1), . . . , (A5) hold. Let (δj) = (δj0, . . . , δ

j
N−1) ∈ RN

be a zero sequence, (yδ
j

) = (yδ
j

0 , . . . , y
δj

N−1) ∈ Y N a corresponding
sequence of noisy data satisfying (1).

Moreover, for each j ∈ N, let (xδ
j

k )
k∗(δj )
k=0 be the corresponding sequence

generated by the sPLWK method (these sequences are generated using
the same (I0, . . . , Ik , . . . )).

Then, (xδ
j

k∗(δj ))j converges in mean square to x†,2 i.e,

lim
j→∞

E
[∥∥xδ

j

k∗(δjn ) − x†
∥∥2]

= 0 . (10)

2Here x† is the x0-minimal norm solution of (2).
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(5.1) Prediction of CO-concentration in a gas sensor array

Description of the chemical experiment:

• We use a data set collected in a gas delivery platform facility at the
ChemoSignals Laboratory in the BioCircuits Institute at University of
California, San Diego.

• This measurement system platform provides versatility for obtaining
the desired concentrations of the chemical substances of interest
with high accuracy.

• The data set contains the readings of 16 chemical sensors (Figaro
Inc., US) of 4 different types:
TGS-2600, TGS-2602, TGS-2610, TGS-2620 (4 units of each type).

• These sensors were exposed to the mixture of Ethylene and CO at
varying concentrations in air Ethylene concentration ranges 0–20ppm,

CO concentration ranges 0–600 ppm

• For this gas mixture, the measurement was constructed by the
continuous acquisition of the 16-sensor array signals for a duration
of approximately 12 hours without interruption.
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(5.1) Prediction of CO-concentration in a gas sensor array

Figure: Gas sensor array with 16 sensors.

• Concentration transitions
were set at random times,
in the interval 80s–120s,
and to random concentra-
tion levels.

• Data set was constructed
such that all possible transi-
tions are present: increasing,
decreasing, setting to zero the concentration of one volatile while the con-
centration of the other volatile is kept constant.

• At the beginning, ending, and approximately every 104s, additional
predefined concentration patterns with pure gas mixtures were inserted.

• The concentration ranges for Ethylene and CO were selected such that
the induced magnitudes of the sensor responses were similar.
(for gas mixtures, lower concentration levels were favored)

• Experimental data available at the UC Irvine Machine Learning Repository:

https://archive.ics.uci.edu/ml/index.php
Data-set “Gas sensor array under dynamic gas mixtures”
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Figure: Scatter plots of Sensor #i data against Sensor #16 data21 / 35



(5.1) Prediction of CO-concentration in a gas sensor array

Prediction of Gas-Concentration: Problem description

• We consider the problem of predicting the reading from sensor #16
based on the readings from the previous 14 sensors.
(readings from Sensor #2 are disregarded due to strong lack of accuracy)

• We use here a NN that inputs the readings from the first sensors and
outputs a scalar value, which predicts the reading of the last sensor.

• Each sensor data consists of 4, 188, 262 scalar measurements.
(Figure: scatter plots of sensor #i readings against sensor #16 readings)

• The structure of proposed NN reads:

— Input: z ∈ R14, readings of the first 14 sensors;

— Output: NN(z ; W , b) = σ(Wz + b) ∈ R,
W ∈ R1×14 matrix of weights;
b ∈ R scalar bias;
σ : R→ R nonlinear activation function.

• This is a very simple NN with only one layer (the output layer).
The dimention of the corresponding parameter space is 15.
(this is the size of (W,b))

22 / 35



(5.1) Prediction of CO-concentration in a gas sensor array

• The inverse problem under consideration is a NN training problem.
one aims to find an approximate solution (a pair of parameters (W,b)) to

Fi (W , b) = yδi , i = 0, . . . ,Nt − 1 . (11)

— Nt < N is the size of the training set.

— yδi readings of sensor #16 at instant 0 < i < Nt .

— Fi (W , b) := NN(zi ; W , b) = σ(Wzi + b).

— zi ∈ R14 readings of the first 14 sensors at instant 0 < i < Nt .

• Once the parameters (W , b) are determined, the performance P of the
corresponding neural network NN(·; W , b) is defined by

P
(

NN(·; W , b)
)

:= 1− 1

NT

Nt+NT−1∑
i=Nt

∥∥NN(zi ; W , b)− yδi
∥∥∥∥yδi

∥∥ . (12)
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Figure: Prediction of CO-concentration in a gas-sensor array.
(TOP) Evolution of residual: Training set (Left) and Test set (Right);
(BOTTOM) Prediction Accuracy: Neural network(Left) and Linear regr.(Right)
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(5.2) Classification problem for the MNIST database

The Modified National Institute
of Standards and Technology
(MNIST) database consists of im-
ages of handwritten digits.
Each image is accompanied by a
corresponding label indicating the
digit it represents.
This dataset is commonly used
in the field of machine learning
for developing neural network ar-
chitechtures, and for testing train-
ing algorithms for neural networks.

Figure: Sample images from the MNIST

database (source Wikipedia).

• The MNIST database contains 60,000 training images (along with 10,000
testing images) of the ten digits.

• Each image consists of a 28× 28 pixel array of grayscale levels.

• The corresponding data-files are accessible from
http://yann.lecun.com/exdb/mnist/.
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(5.2) Classification problem for the MNIST database

• The mathematical model: we use here a NN that inputs a 28×28
pixel array of grayscale levels (a vector in R784 with coordinates ranging
from zero (black) to 255 (white)) and outputs a vector in R10.

• The classification of the handwritten digit depicted in the image is
given by the coordinate of the output vector with maximal absolute value

• The architechture of the NN used in our experiments:
— Input: z ∈ R784, pixel array from the MNIST database;
— Hidden layer: z̃ := σ1(W1z + b1) ∈ R64, where W1 ∈ R64,784 and

b1 ∈ R64;
— Output: NN(z ; W1, b1,W2, b2) := σ2(W2z̃ + b2) ∈ R10, where

W2 ∈ R10,64 and b2 ∈ R10.

W1, W2 are weight matrices;

b1, b2 are biases vectors;

σ1 : R64 → R64 and σ2 : R10 → R10 are nonlinear activation functions.
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(5.2) Classification problem for the MNIST database

• The classification of the input image z is given by the scalar value
j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} defined by

j := arg max
0≤i≤9

∣∣NNi (z ; W1, b1,W2, b2)
∣∣.

(notation: NN(·) = [NNi (·)]9
i=0 ∈ R10)

• This NN has only 2-layers 784–64–10
(one hidden layer and the output layer)

• the dimension of the corresponding parameter space is

50, 890 = 64(784 + 1) + 10(64 + 1)

(i.e. the dimension of the set of parameters (W1,W2,b1,b2))

• Typically, much larger NN’s are used for atacking the MNIST problem:
— The Deep NN in [Ciresan Et al. 2010] has 6–layers

784-2500-2000-1500-1000-500-10
— This NN achieves an accuracy rate of 99.65%.
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(5.2) Classification problem for the MNIST database

• The inverse problem under consideration is a NN training problem.

• One aims to find an approximate solution (W1, b1,W2, b2) to the
nonlinear system

Fi (W1, b1,W2, b2) = yi , i = 0, . . . ,Nt − 1 . (13)

— Nt = 60, 000 is the size of the training set

— Fi (W1, b1,W2, b2) := NN(zi ; W1, b1,W2, b2)
= σ2

(
W2 σ1(W1zi + b1) + b2

)
,

— zi is the i th-image of the MNIST database for i = 0, . . . ,Nt − 1.

— The r.h.s. in (13) is a vector yi = (0, . . . , 0, 1, 0, . . . , 0) ∈ R10

(the index of the coordinate “1” indicates the digit depicted in image zi )

(note that the data in (13) is exact, i.e. the noise level is δ = 0)
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(5.2) Classification problem for the MNIST database

• The activation functions σ1, σ2 : R→ R used in the above NN are
variations of the sigmoid function, namely:

σ1(t) = 1
2 tanh(t/10) and σ2(t) = 2 tanh(t/10).

• pSGD method is implemented for solving the NN training problem (13)

— Initial guess (W 0
1 , b

0
1,W

0
2 , b

0
2) consists of random matrices/vectors.

— Three different runs of the pSGD method are presented in Figure 31.

— In each one of them the iteration (W k
1 , b

k
1 ,W

k
2 , b

k
2 ) is computed for

20 epochs, i.e. for k = 1, . . . , 20Nt .

— In the first 2 runs we choose the sequence θk ≡ 1 in (A4), while in the
last run a random sequence θk ∈ (0, 2) is choosen.

— The numerical results plotted in Figure 31 show:

(TOP) Evolution of relative residual on the training set:∑Nt−1
i=0

∥∥NN(zi ;W
k
1 ,b

k
1 ,W

k
2 ,b

k
2 )−yi

∥∥∥∥NN(zi ;W 0
1 ,b

0
1 ,W

0
2 ,b

0
2)−yi

∥∥ .

(BOTTOM) Evolution of relative residual on the test set:∑Nt+NT−1
i=Nt

∥∥NN(zi ;W
k
1 ,b

k
1 ,W

k
2 ,b

k
2 )−yi

∥∥∥∥NN(zi ;W 0
1 ,b

0
1 ,W

0
2 ,b

0
2)−yi

∥∥ .
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(5.2) Classification problem for the MNIST database

————————————–

Figure: MNIST classification problem. (TOP) Evolution of the relative residual
for training set; (BOTTOM) Evolution of the relative residual for test set.

————————————–
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(5.2) Classification problem for the MNIST database

• NT = 10,000 is the number of images in the MNIST database test set.

• For comparison, the SGD method was also implemented for solving (13)
(the evolution of the corresponding residuals is also plotted)

• Following every 1
10 Nt steps, the average relative residual is computed

on the test set; the index 0 ≤ k∗ ≤ 20Nt is chosen s.t.
(Wk∗

1 ,b
k∗

1 ,W
k∗

2 ,b
k∗

2 ) exhibits the smallest relative residual.

• After selecting (W k∗

1 , bk∗

1 ,W k∗

2 , bk∗

2 ), the accuracy rate of the
corresponding neural network NN(·; W k∗

1 , bk∗

1 ,W k∗

2 , bk∗

2 ) is calculated
using the test set.

• In this experiment, k∗ = 19.4Nt is obtained from the first run of the
pSGD method.

• The accuracy rate of NN(·; Wk∗

1 ,b
k∗

1 ,W
k∗

2 ,b
k∗

2 ) is 95.96%.
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(5.2) Classification problem for the MNIST database

Accuracy rate & Confusion matrix:

• The accuracy rate of NN(·; W k∗

1 , bk∗

1 ,W k∗

2 , bk∗

2 ) is given by the trace of
the confusion matrix divided by NT .

• The confusion matrix is a table that is used to evaluate the
performance of a classification model.

• It provides a summary of how well the model has classified the different
classes in a dataset.

• It is typically used for problems like the MNIST classification, where the
output of the model can belong to multiple classes.

• It displays the actual class labels of the data against the predicted class
labels generated by the model.

• The main diagonal in Figure 3 represents the correctly classified
instances, while the off-diagonal elements represent misclassifications.

• The final entry in a row/column represents the cumulative sum of all
preceding elements in that particular row/column.
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(5.2) Classification problem for the MNIST database

————————————–

Figure: MNIST classification. Confusion matrix for NN(·;W k∗
1 , bk

∗
1 ,W k∗

2 , bk
∗

2 )

————————————–
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Thank you for your time

and your interest ! ! !
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Abstract

• Inverse problem: to determine the position and shape of a crack in a
bounded domain Ω⊂ R2 from electrical measurements on the boundary ∂Ω.

Figure: Tipical crack scenarios b?
k , k = 1,2,3.
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Abstract

• Based on the level-set approach in [2] and on the regularization strategy in
[3], we propose a Tikhonov type method for stabilizing the inverse problem.

D. Alvarez, O. Dorn, N. Irishina, M. Moscoso, Crack reconstruction using
a level-set strategy, Journal of Computational Physics 228 (2009)

A. De Cezaro, A. Leitão, X.-C. Tai, On multiple level-set regularization
methods for inverse problems, Inverse Problems 25 (2009)

• An iterative method of multiple level-set type is derived from the optimality
conditions for the Tikhonov functional, and a relation between this method
and the iterated Tikhonov method is establised.
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The Model problem

• We assume that the domain Ω has Lipschitz boundary and represents the
specimen under investigation.
• A set of currents profiles {ηj}N

j=1 are applied at ∂Ω, for with, we have
access to measurements of the corresponding potentials {uj}N

j=1 on ∂Ω.
• The corresponding electric potential uj satisfies

∇ · (b(x)∇uj (x)) = 0 , x ∈ Ω , b(x)(uj (x))ν = ηj (x) , x ∈ ∂Ω. (1)

with
∫

∂Ω ηj = 0, for j = 1, · · · ,N

Figure: Typical NtD experiment. (LEFT) Crack b?
2. (RIGHT) Solutions u1, u2

and u8 of (1) for the Neumann data η1, η2 and η8 respectively.
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The Model problem

• Insulating cracks with finite conductivity contrast between the interior and
the exterior of the crack are modeled by the conductivity coefficient b(x).

— b(x) = bi , if x is inside the crack;
— b(x) = be, if x is outside the crack;
— be >> bi ;
— β > 0 fixed crack thickness.

• This corresponds to the assumption that cracks can be modeled as a thin
structure with small thickness along a curve contained in Ω.

• The inverse problem we are concerned with consists in identifying the
coefficient function b(x) from a finite number N of experiments, where the
current profiles ηj , j = 1, . . . ,N, are chosen in an appropriate way and the
corresponding measurements γj := uj |∂Ω are available.
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The Model problem

• Notation:

— DF := {b ∈ L∞(Ω); b ≥ b(x)≥ b > 0, a.e. in Ω}
— X := {b ∈ L∞(Ω);b(x)≥ b > 0, a.e. in Ω}
— Y := H1/2(∂Ω)

• If ηj ∈ H−1/2(∂Ω), the Neumann BVP in (1) has a unique solution

uj ∈ H1
∗ := {u ∈ H1(Ω);

∫
∂Ω

uj = 0}.

• The crack detection problem can be written in terms of the system of
nonlinear operator equations

Fj : DF ⊂ X → Y

b 7→ Fj (b) = uj |∂Ω =: γj (2)
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The Model problem

• Literature overview (far from being complete):

— A. Friedman, M. Vogelius, Determining cracks by boundary
measurements, Indiana University Mathematics Journal 38 (1989)

— M. Bruhl, M. Hanke, M. Pidcock, Crack detection using electrostatic
measurements, ESAIM: Mathematical Modelling and Num. Anal. 35 (2001)

— Y. Boukari, H. Haddar, The factorization method applied to cracks with
impedance boundary conditions, Inv. Probl. & Imaging 7 (2013)

— J. Guo, X. Zhu, The factorization method for cracks in EIT, Comp. Appl.
Math. 40 (2021)

— A. Hauptmann, M. Ikehata, H. Itou, S. Siltanen, Revealing cracks inside
conductive bodies by electric surface measurements, Inverse Problems 35
(2018)

— W-K. Won-Kwang Park, Performance analysis of multi-frequency
topological derivative for reconstructing perfectly conducting cracks, Journal
of Comput. Physics 335 (2017)
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Main results

• Main results:

i) Modelling the parameter space:
The parameters b ∈ DF are represented using pairs of level-set
functions (ϕ,ψ) ∈ H1(Ω)2, i.e., b = P(ϕ,ψ) where P is a discontinuous
operator;

ii) Tikhonov regularization approach:
The multiple level-set approach in i) is used to define a Tikhonov
functional based on TV -H1 regularization;

iii) Iterative method:
The optimality conditions for this Tikhonov functional allow the
derivation of an iterative multiple level-set type method for solving the
crack identification problem.
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Motivation: Multiple leve-set methods for inverse problems

• Solve the abstract operator equation

F(u) = y , ‖yδ− y‖Y ≤ δ ,

F : D⊂ X → Y is a Fréchet diff. mapping X Banach, Y Hilbert space.

• Assumption: the solution u of the Inv.Probl. above is a simple function
defined on a bounded domain Ω⊂ Rd , d = 2,3, and assuming at most N
different values,

• Ansatz: A solution u can be represented in the form

u = c1H(φ
1)H(φ

2) + c2H(φ
1)(1−H(φ

2))+

c3(1−H(φ
1))H(φ

2) + c4(1−H(φ
1))(1−H(φ

2)) =: P(φ
1,φ2) ,

("color level-set" or "multiple level-sel"; [Tai/Chan’04], [Chan/Vese’02] +
Tai, Dorn, Ascher, van den Doel, A.L.).

• Rewrite the inverse problem in the form:

F(P(φ
1,φ2)) = y ,

and solve it in terms of (φ1,φ2), the level-set functions.
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Motivation: Multiple leve-set methods for inverse problems

• Choose a Tikhonov functional:
– The least square approach leads to the Santosa model

Fα(φ
1,φ2) := ‖F(P(φ

1,φ2))− yδ‖2
Y ,

– The ROF approach leads to the Chan-Vese model

Fα(φ
1,φ2) := ‖F(P(φ

1,φ2))− yδ‖2
Y + α

2
∑

j=1
|H(φ

j )|BV ,

(in general one cannot guarantee the existence of a minimizers)
– The BV-H1 approach leads to the models in [Scherzer/AL’05] and [Tai/AL’09]

Gα(φ
1,φ2) := ‖F(P(φ

1,φ2))− yδ‖2
Y + α

2
∑

j=1

{
β|H(φ

j )|BV +‖φj −φ
j
0‖

2
H1(Ω)

}
.

– (PLAY VIDEO) Example: Inverse Potential Problem in 2D.
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Level-set representation for cracks

Multiple level-set representation in [2] for cracks:

• A level-set function ϕ : Ω→ R is chosen such that its zero level-set
Γϕ := {x ∈ Ω; ϕ(x) = 0} defines a connected curve within Ω; the cracks are
located ’along’ Γϕ.

• Another level-set function ψ : Ω→ R is chosen such the cracks are
contained in the set B := {x ∈ Ω; ψ(x) < 0}.

— The intersections of the level-set curve Γψ := {x ∈ Ω; ψ(x) = 0} with Γϕ

coincide with the endpoints of the cracks.

— The position of the cracks corresponds to the set

S = S(ϕ,ψ) := Γϕ∩B .
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Level-set representation for cracks

• We consider the cracks to have small fixed thickness β > 0 and
conductivity bi > 0 much smaller than the background value be > 0 (the three
constants are known).

• The position of the cracks is represented by the set

Sβ = Sβ(ϕ,ψ) := {x ∈ Ω; 0 < ϕ(x) < β} ∩ {x ∈ Ω; ψ(x) < 0}.

Figure: Multiple level-set representation for cracks.
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Level-set representation for cracks

• The conductivity distribution b(x) in (1) is modeled by

b(x) = be + (bi −be) χSβ
(x) , (3)

where χSβ
is the indicator function of the set Sβ.

(multiple level-set representation of the parameter b)

• Following [3] we introduce the Heaviside projector

(H(φ))(x) :=

{
1, if φ(x) > 0

0, if φ(x)≤ 0
,

and the translation (Hβ(φ))(x) := H(φ(x)−β).

• The conductivity distribution b(x) can be written in the form

b = (bi −be) [H(ϕ)−Hβ(ϕ)] H(ψ) + be =: P(ϕ,ψ) . (4)
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Level-set representation for cracks

• As already observed in [3], the operator H maps H1(Ω) into the space

V0,1 := {w ∈ L∞(Ω) |w = χS , S ⊂ Ω measurable, H 1(∂S) < ∞} , (5)

(H 1(S) denotes the one-dimensional Hausdorff-measure of the set S)

• The operator P in (4) maps H1(Ω)×H1(Ω) into the admissible class

V := {w ∈ L∞(Ω) |w = be +(bi−be)χS , S⊂Ω measurable, H 1(∂S)<∞} ,

• Within this framework, the inverse problem (2) can be written in the form of
the system of operator equations

Fj (P(ϕ,ψ)) = γ
δ
j , j = 1, . . . ,N. (6)

(once a solution (ϕ,ψ) of (6) is obtained, a corresponding solution of (2) is
given by b = P(ϕ,ψ))
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Towards stable approximate solutions

A Thikhonov approach:

• We follow [3] and introduce the Tikhonov functional

Gα(ϕ,ψ) :=
N
∑

j=1
‖Fj (P(ϕ,ψ))− γ

δ
j ‖2

Y + α
{
|H(ϕ)|BV + |Hβ(ϕ)|BV + |H(ψ)|BV

+‖ϕ−ϕ0‖2
H1(Ω) +‖ψ−ψ0‖2

H1(Ω)

}
, (7)

based on TV–H1 penalization.

• The H1–terms act simultaneously as a control on the size of the norm and
as a regularization on the space H1(Ω).

• The BV-seminorm terms are well know for penalizing the length of the
Hausdorff measure of the boundary of the sets {x : ϕ(x) > 0},
{x : ϕ(x) > β} and {x : ψ(x) > 0}.
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Exact solutions / Initial guess for the level-set method

Figure: Exact cracks b?
k , k = 1,2,3 used in the numerical experiments.

Figure: Initial guess for the level-set method: (LEFT) ϕ0, (CENTER) ψ0,
(RIGHT) corresponding crack Pε(ϕ0,ψ0).



Introduction Modelling the parameter space Numerical experiments Tikhonov regularization Bibliography

Initial guess for the level-set method

Figure: Initial guess for the level-set method: (LEFT) ϕ0, (RIGHT) ψ0.
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Crack scenario b?3 with δ = 1%

Figure: Crack scenario b?
3 with δ = 1%. Evolution of bk = Pε(ϕk ,ψk ) for

0≤ k ≤ 1500.
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Crack scenario b?3 with δ = 1%

Figure: Crack scenario b?
3 with δ = 1%. Evolution of the level-set functions

ϕk and ψk for 0≤ k ≤ 1500.
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Crack scenarios b?1 ,b
?
2 ,b

?
3 with δ = 1% & δ = 20%

Figure: Reconstructions: Crack scenarios b?
1, b?

2, b?
3 divided by columns.

(TOP ROW) noise level δ = 1%. (BOTOM ROW) noise level δ = 20%.
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Crack scenarios b?1 ,b
?
2 ,b

?
3 with δ = 1% & δ = 20%

Figure: Residual/Error: Crack scenarios b?
1, b?

2, b?
3 divided by columns.

(TOP ROW) Relative residual. (BOTTOM ROW) Relative iteration error.



Introduction Modelling the parameter space Numerical experiments Tikhonov regularization Bibliography

Crack scenario b?2 revisited / N = 4,8,16

Figure: Crack scenario b?
2 revisited: Noise level δ = 20%.

Reconstruction results for distinct values of N.
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Crack scenario b?1 revisited / N = 16, distinct current patterns

• Current patterns:

( 1 0 0 0 -1 0 0 0) ( 1 -1 0 0 0 0 0 0) ( 1 0 -1 0 0 0 0 0)

Figure: Crack scenario b?
1 revisited: δ = 20% and N = 16.

Reconstruction results for distinct current patterns.
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Main assumptions

(A1) Ω⊆ R2 is bounded with piecewise C1 boundary ∂Ω.

(A2) System (6) has a solution, i.e. there exists b∗ ∈U s.t. Fj (b∗) = γj ,
j = 1, . . . ,N.

There exist functions ϕ∗, ψ∗ ∈ H1(Ω) satisfying P(ϕ∗,ψ∗) = b∗, with
|∇ϕ∗| 6= 0, |∇ψ∗| 6= 0 in a neighborhood of {ϕ∗ ∈ [−β/2,β/2]},
{ψ∗ = 0} respectively.

It holds H(ϕ∗+ β/2) = z1, H(ϕ∗−β/2) = z2, H(ψ∗) = z3, for some
z1, z2, z3 ∈ V0,1.

• Continuous approximations to the operators P and H. Given ε > 0, define

Pε(ϕ,ψ) := (bi −be)[Hε(ϕ)−Hβ,ε(ϕ)]Hε(ψ) + be , (8)

and

Hε(φ) :=


0, if φ <−ε

1 + φ

ε
, if φ ∈ [−ε,0]

1, if φ > 0.

(the operators Hβ,ε are defined analogously)
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Generalized minimizers

Definition (Generalized minimizers)

a) A tuple of functions (z1,z2,z3,ϕ,ψ) ∈ (L∞(Ω))3× (H1(Ω))2 is called
admissible if there exist sequences {ϕk}k∈N, {ψk}k∈N in H1(Ω), and a
sequence {εk}k∈N of positive numbers converging to zero such that

lim
k→∞
‖ϕk −ϕ‖L2(Ω) = 0 , lim

k→∞
‖ψk −ψ‖L2(Ω) = 0 ,

lim
k→∞
‖Hεk (ϕk )−z1‖L1 = lim

k→∞
‖Hβ,εk (ϕk )−z2‖L1 = lim

k→∞
‖Hεk (ψk )−z3‖L1 = 0.

b) A minimizer of Ĝα is considered to be any admissible tuple of the form
(z1,z2,z3,ϕ,ψ) minimizing

Ĝα(z1,z2,z3,ϕ,ψ) :=
N
∑

j=1

∥∥Fj (q(z1,z2,z3))− γ
δ
j

∥∥2
Y + αρ(z1,z2,z3,ϕ,ψ)

(9)
over all admissible tuples.
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Generalized minimizers

Definition (continuation)

Here the functional ρ is defined by

ρ(z1,z2,z3,ϕ,ψ) := inf
{

liminf
k→∞

(
µ1|Hεk (ϕk + β

2 )|BV + µ2|Hεk (ϕk − β

2 )|BV

+ µ3|Hεk (ψk )|BV + µ4‖ϕk −ϕ0‖2
H1 + µ5‖ψk −ψ0‖2

H1

)}
, (10)

where the infimum is taken with respect to all sequences {εk} and
{(ϕk ,ψk )} satisfying (a).

c) A generalized minimizer of Gα(ϕ,ψ) is a minimizer of Ĝα(z1,z2,z3,ϕ,ψ)
on the set of admissible tuples.

Lemma (Closedness of the set of admissible tuples)

Let (z1
k ,z

2
k ,z

3
k ,ϕk ,ψk ) be a sequence of admissible tuples converging in

(L1(Ω))3× (L2(Ω))2 to some (z1,z2,z3,ϕ,ψ) ∈ (L∞(Ω))3× (H1(Ω))2. Then
(z1,z2,z3,ϕ,ψ) is an admissible tuple.
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Generalized minimizers

Lemma (coercivity and l.s.c. of ρ on the set of admissible tuples)

For each admissible quintuple (z1,z2,z3,ϕ,ψ), we have

3
∑

i=1
µi |z i |BV + µ4‖ϕ−ϕ0‖2

H1 + µ5‖ψ−ψ0‖2
H1 ≤ ρ(z1,z2,z3,ϕ,ψ) . (11)

Moreover, given a sequence {(z1
k ,z

2
k ,z

3
k ,ϕk ,ψk )}k∈N of admissible tuples

such that z i
k → z i in L1(Ω), ϕk ⇀ ϕ in H1(Ω), ψk ⇀ ψ in H1(Ω), where

(z1,z2,z3, ϕ,ψ) is some admissible tuple, then

ρ(z1,z2,z3,ϕ,ψ) ≤ liminf
k∈N

ρ(z1
k ,z

2
k ,z

3
k ,ϕk ,ψk )

(i.e., ρ is weak-lower semi-continuous)
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Well-Posedness of Gα

Proposition (Regularity property of the operators Fj )

Let the boundary data in the BVP (1) satisfy ηj ∈ (W 1−1/q,q(∂Ω))′, for
q = p/(p−1), for any p ∈ (2,p0).
Then, the operators Fj : D(F)⊂ L1(Ω)→ Y are continuous on D(F) with
respect to the L1(Ω)-topology.

Theorem (Well-Posedness of the functionals Gα)

The functional Gα in (7) attains generalized minimizers on the set of
admissible tuples.

Sketch of the proof. First, notice that the set of admissible tuples is not empty.
Given a minimizing sequence of admissible quintuples for Ĝα, it follows from
the coercivity of ρ, the Sobolev compact embedding (of H1 in L2) and the
compact embedding of BV into L1, that this minimizing sequence converges
to some tuple which is admissible (due to Lemma 1).
From the weak lower semi-continuity of ρ together with the cont. of Fj and the
cont. of q, we conclude that the limit tuple is a minimizer of Ĝα. �
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Convergence for exact and noisy data

• Main convergence and stability results.

Theorem (Convergence for exact data)

Assume that we have exact data, i.e. γδ
j = γj . For every α > 0, let

(z1
α,z

2
α,z

3
α,ϕα,ψα) denote a minimizer of Ĝα on the set of admissible tuples.

Then, for every sequence of positive numbers {αk}k∈N converging to zero
there exists a subsequence, denoted again by {αk}l∈N, such that
(z1

αk
,z2

αk
,z3

αk
,φ1

αk
,φ2

αk
) is strongly convergent in (L1(Ω))3× (L2(Ω))2.

Moreover, the limit is a solution of (6).

Theorem (Convergence for noisy data)

Let α = α(δ) be a function satisfying limδ→0 α(δ) = 0 and
limδ→0 δ2 α(δ)−1 = 0. Moreover, let {δk}k∈N be a sequence of positive
numbers converging to zero and γδk ∈ Y be corresponding noisy data
satisfying (??). Then, there exist a subsequence (denoted again by {δk})
and a sequence {αk := α(δk )} such that (z1

αk
,z2

αk
,z3

αk
,ϕαk ,ψαk ) converges

in (L1(Ω))3× (L2(Ω))2 to solution of (6).
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A smoothed functional

• Consider the smoothed Tikhonov functional

Gε,α(ϕ,ψ) :=
N
∑

j=1
‖Fj (Pε(ϕ,ψ))−γ

δ
j ‖2

Y +α
{
|Hε(ϕ)|BV+|Hβ,ε(ϕ)|BV+|Hε(ψ)|BV

+‖ϕ−ϕ0‖2
H1(Ω) +‖ψ−ψ0‖2

H1(Ω)

}
, (12)

where Pε(ϕ,ψ) := q(Hε(ϕ),Hβ,ε(ϕ),Hε(ψ)).

Lemma (Well posedness of Gε,α)

Given α, ε > 0 and ϕ0,ψ0 ∈ H1(Ω), the functional Gε,α in (12) attains a
minimizer on (H1(Ω))2.

Theorem (Relation between minimizers of Gα and Gε,α)

Let α > 0 be given. For each ε > 0 denote by (ϕεk ,α,ψεk ,α) a minimizer of
Gε,α. There exists a sequence of positive numbers {εk} converging to zero
such that (Hεk (ϕεk ,α),Hεk (ψεk ,α),Hβ,εk (ψεk ,α),ϕεk ,α,ψεk ,α) converges

strongly in (L1(Ω))3× (L2(Ω))2 and the limit minimizes Ĝα in the set of
admissible 4-tuples.
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Step of the iterative multiple level-set method

• Conditions of optimality for Gε,α

α(∆− I)(ϕk+1−ϕk ) = R1
ε,α(ϕk ,ψk ) , in Ω (13a)

(ϕk+1−ϕk )ν = 0 , at ∂Ω (13b)

α(∆− I)(ψk+1−ψk ) = R2
ε,α(ϕk ,ψk ) , in Ω (13c)

(ψk+1−ψk )ν = 0 , at ∂Ω (13d)

where

R1
ε,α(ϕ,ψ) = Θ1

ε F ′j (Pε(ϕ,ψ))∗ (Fj (Pε(ϕ,ψ))− γ
δ
j ) +

+ terms related to |∇Hε(ϕ)|BV , |∇Hβ,ε(ϕ)|BV , (14a)

R2
ε,α(ϕ,ψ) = Θ2

ε F ′j (Pε(ϕ,ψ))∗ (Fj (Pε(ϕ,ψ))− γ
δ
j ) +

+ terms related to |∇Hε(ψ)|BV , (14b)

and

Θ1
ε(ϕ,ψ) = (bi −be) Hε(ψ) [H ′ε(ϕ)−H ′

β,ε(ϕ)] , (15a)

Θ2
ε(ϕ,ψ) = (bi −be) [Hε(ϕ)−Hβ,ε(ϕ)] H ′ε(ψ) . (15b)
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The end

Thank You ! ! !
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