





# Aplicando a Teoria Espectral em Subclasses de Grafos Tripartido Completo

Gama, Simone<sup>1</sup>;

Resumo: A teoria espectral de grafos é uma ferramenta poderosa para analisar as propriedades do grafo. Os polinômios característicos, os autovalores, que são as raízes do polinômio característico, fornecem informações sobre a conectividade, estabilidade e outras características estruturais importantes de um grafo. Este trabalho apresenta a determinação espectral do grafo tripartido completo, mais especificamente as subclasses  $K_{1.1.i}$  e o  $K_{1.2.i}$  para  $i \ge 1$ . Os polinômios característicos e os autovalores para i = 1, 2, ..., 8 dessas subclasses são analisadas e definidas.

Palavras-chave: Teoria espectral de grafos, grafos tripartido completo, polinômio característico, autovalores.

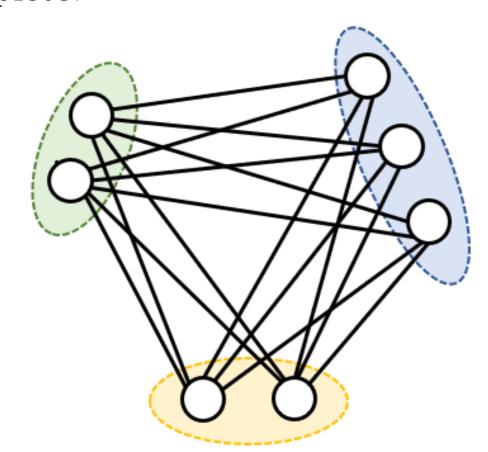
#### 1. Introdução

A teoria espectral em grafos tripartidos completos pode ser uma ferramenta matemática essencial para explorar e entender as propriedades estruturais desses grafos. Analisando o polinômio característico e seus autovalores, podemos obter informações estruturais valiosas sobre a conectividade, estabilidade e outras características importantes dos grafos tripartidos, o que tem ampla aplicação em diversas áreas da ciência e engenharia.

**Definição 1** Um grafo G = (V, E) é um conjunto finito não-vazio onde V(G) é um conjunto de vértices e E(G) é um conjunto de arestas. Cada elemento e no conjunto E é um par (i, j) que indica que o vértice i é adjacente ao vértice j (ou seja, são adjacentes, e a aresta e incide em i e j).

O grafo é dito não-direcionado quando os pares que representam as arestas são não-ordenados, isto é, (i,j)=(j,i). A representação gráfica de um grafo consiste em pontos distintos do plano associados a cada vértice e, para cada aresta (i,j), um segmento de reta conectando os pontos correspondentes aos vértices  $i \in j$ .

Um grafo k-partido é um grafo cujos vértices podem ser particionados em k partes, onde quaisquer vértices em uma mesma parte são não-adjacentes entre si. Um grafo é k-partido completo se existe aresta entre todos os pares de vértices que estão em partes diferentes. No caso do grafo bipartido completo, o k=2. No caso em que k=3 de um grafo k-partido completo, o grafo é conhecido como **tripartido completo**.



**Figura 1**. Grafo tripartido completo  $K_{2,2,3}$ .

Neste trabalho, iremos analisar o espectro dos grafos tripartido completo, mais especificamente as subclasses  $K_{1,1,i}$  e  $K_{1,2,i}$ , para  $i \geq 1$ , onde o polinômio característico e seus autovalores são definidos.

## 2. Teoria Espectral dos Grafos

Seja um grafo G = (V, E) com n vértices. A matriz de adjacência A(G) de G é a matriz quadrada de ordem n cujas as entradas são  $a_{ij} = 1$  se os vértices  $v_i$  e  $v_j$  são adjacentes e  $a_{ij} = 0$  caso contrário. O polinômio característico dessa matriz  $p_G = det(A - \lambda Id_n)$  é conhecido como **polinômio característico do grafo** correspondente e nos apresenta informações importantes a respeito das propriedades do grafo. Trata-se de um polinômio de grau igual à ordem da matriz (que equivale a ordem do grafo) que o define. Suas raízes são os autovalores de A. Dizemos que  $\lambda$  é um **autovalor** do grafo G, se  $\lambda$  é um autovalor da sua matriz de adjacência A(G), e que o polinômio característico de A(G),  $p(\lambda) = det(A - \lambda I)$  é o polinômio característico de G, notado  $p_G(\lambda)$ . Essas definições são baseados de [5].

Se a matriz A(G) possui autovalores distintos de  $\lambda_1 > \dots \lambda_s$  com multiplicidade iguais a  $m(\lambda_1), \dots m(\lambda_s)$ , respectivamente, então o espectro do grafo é denotado spect, é definido como a matriz 2xs, onde onde a primeira linha é constituída pelos autovalores distintos de A(G) dispostos em ordem decrescente e a segunda linha, pelas suas respectivas multiplicidades algébricas.

Caracterizações em grafos tripartido completo sob o olhar da álgebra linear são vistos em alguns trabalhos, como o trabalho de [1], que apresenta uma caracterização do grafo tripartido completo  $K_{i,i,n-2i}$  para  $n \geq 4$ . O trabalho [3] apresenta uma caracterização em grafos tripartidos completos que são regulares e possuem estrela como complemento. Caracterizações em outras classes de grafos sob o aspecto da álgebra linear podem ser vistos em [5].

#### 3. Resultados obtidos

Seja n a quantidade de vértices e m a quantidade de arestas para os grafos tripartido completo  $K_{1,1,i}$  e  $K_{1,2,i}$ , para  $i \geq 1$ . O polinômio característico da matriz A(G) de ordem n possui grau n, isto é,

$$p(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda, a_n \tag{1}$$

A Tabela 1 apresenta os polinômios característicos dos tripartidos completos  $K_{1,1,i}$  e do  $K_{1,2,i}$  para  $i=1,2,\ldots,8$ :

| i | $\mid K_{1,1,i}$                           | $\mid K_{1,2,i}$                            |
|---|--------------------------------------------|---------------------------------------------|
| 1 | $-\lambda^3 + 3\lambda + 2$                | $\lambda^4 - 5\lambda^2 - 4\lambda$         |
| 2 | $\lambda^4 - 5\lambda^2 - 4\lambda$        | $-\lambda^5 + 8\lambda^3 + 8\lambda^2$      |
| 3 | $-\lambda^5 + 7\lambda^3 + 6\lambda^2$     | $\lambda^6 - 11\lambda^4 - 12\lambda^3$     |
| 4 | $\lambda^6 - 9\lambda^4 - 8\lambda^3$      | $-\lambda^7 + 14\lambda^5 + 16\lambda^4$    |
| 5 | $-\lambda^7 + 11\lambda^5 + 10\lambda^4$   | $\lambda^8 - 17\lambda^6 - 20\lambda^5$     |
| 6 | $\lambda^8 - 13\lambda^6 - 12\lambda^5$    | $-\lambda^9 + 20\lambda^7 + 24\lambda^6$    |
| 7 | $-\lambda^9 + 15\lambda^7 + 14\lambda^6$   | $\lambda^{10} - 23\lambda^8 - 28\lambda^7$  |
| 8 | $\lambda^{10} - 17\lambda^8 - 16\lambda^7$ | $-\lambda^{11} + 26\lambda^9 + 32\lambda^8$ |

**Tabela 1**. Polinômios característicos do  $K_{1,1,i}$  e  $K_{1,2,i}$ .

Os sinais positivos e negativos nos polinômios têm significados específicos e desempenham papéis importantes na determinação das propriedades da matriz e na estrutura dos grafos. Com os valores obtidos na Tabela 1, podemos observar algumas delas, como:

**Proposição 1** Seja G um grafo com n vértices e m arestas e seja a Equação (1) o polinômio característico de G. Então os coeficientes de  $p_G(\lambda)$  satisfazem as seguintes propriedades:

1.  $a_1 = 0$ ;

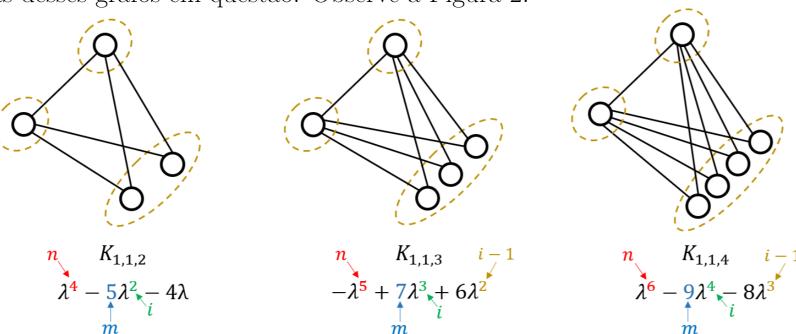
 $2. a_2 = -m;$ 

3.  $a_3 = -2s$ , onde s é o número de triângulos no grafo.

**Prova**. As demonstrações dos itens 1, 2 e 3 podem ser vistos em [2].

Os expoentes no polinômio característico indicam as potências da variável  $\lambda$  e representa a **multiplicidade algébrica** daquele autovalor. A multiplicidade algébrica de um autovalor ( $\lambda$ ) indica a maior potência de ( $\lambda-I$ ) que divide o polinômio característico completamente fatorado. Em outras palavras, representa quantas vezes ( $\lambda-I$ ) aparece como um fator na fatoração do polinômio.

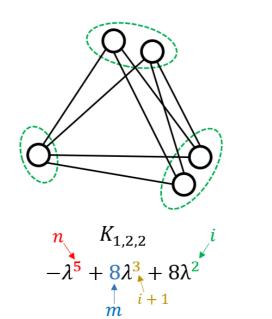
No contexto dos grafos tripartidos completo, os expoentes do polinômio característico fornecem informações relevantes sobre as propriedades estruturais e topológicas desses grafos em questão. Observe a Figura 2:

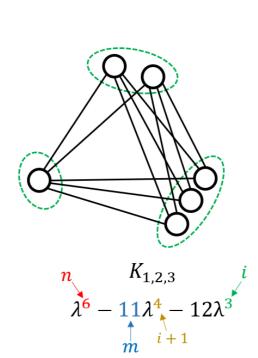


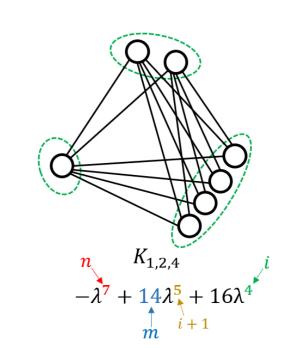
**Figura 2**. Caracterização estrutural do  $K_{1,1,i}$ , para i = 2, 3, 4.

Tanto para  $K_{1,1,i}$  quanto para  $K_{1,2,i}$ , o polinômio característico é composto dos coeficientes  $a_0$ ,  $a_1$  e  $a_2$ . Podemos ver que o expoente do coeficiente  $a_0\lambda^n$  equivale ao número de vértices n, o coeficiente  $a_1\lambda^{n-1}$  equivale ao número de arestas m e seu expoente respectivo equivale a i. Note que o valor de i equivale também a quantidade de triângulos no grafo tripartido completo.

Agora, quando olhamos o polinômio característico do grafo tripartido completo  $K_{1,2,i}$  (Figura 3), temos um cenário um pouco diferente quando se trata da quantidade de triângulos existente nesse grafo.







**Figura 3**. Caracterização estrutural do  $K_{1,2,i}$ , para i=2,3,4.

A quantidade de triângulos em um  $K_{1,2,i}$  pode ser determinado pelo expoente do coeficiente  $a_2$ , onde seja, 2i. Vemos então que o polinômio característico de um grafo tripartido completo determina o número de seus vértices, de suas arestas e de seus triângulos. No entanto, não é possível generalizar para todos os tripartidos completos, ou seja, nem sempre os ciclos de comprimento s ( $s \ge 3$ ) são determinados em função dos expoentes dos polinômios.

Os **autovalores** de um polinômio característico têm um significado importante na álgebra linear e na teoria de matrizes. Os autovalores  $\lambda_1, \lambda_2, \ldots, \lambda_n$  de uma matriz A são as raízes do seu polinômio característico  $p(\lambda)$ , ou seja, são os valores que satisfazem  $det(A - \lambda I) = 0$ .

Para os tripartidos completos  $K_{1,1,i}$  e  $K_{1,2,i}$ , temos as seguintes propriedades relacionadas aos seus autovalores:

**Teorema 1** Seja  $K_{1,1,i}$  o grafo tripartido completo não regular de ordem n e de tamanho m. O seu autovalor  $\lambda_1 = 0$  para i > 4 e  $\lambda_1 < n$ .

**Prova**. A prova é trivial e pode ser adaptada de [1].

**Teorema 2** Seja  $K_{1,2,i}$  o grafo tripartido completo não regular de ordem n e de tamanho m. O seu autovalor  $\lambda_1 = 0$  para i > 0.

A Tabela 2 apresenta os autovalores de  $K_{1,1,i}$  e  $K_{1,2,i}$  (para  $i=1,2,\ldots,8$ ), que são raízes dos polinômios característicos definidos anteriormente:

| i | $K_{1,1,i}$                                                                                     | $\mid K_{1,2,i} \mid$                                                     |
|---|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1 | $\lambda_1=2, \lambda_2=-1, \lambda_3=-1$                                                       | $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = -1.562, \lambda_4 = 2.562$    |
| 2 | $\lambda_1 = -1, \lambda_2 = -(-1 + \sqrt{17})/2, \lambda_3 = (1 + \sqrt{17})/2, \lambda_4 = 0$ | $\lambda_1 = 0, \lambda_2 = -2, \lambda_3 = -1.2, \lambda_4 = 3.2$        |
| 3 | $\lambda_1 = 3, \lambda_2 = -1, \lambda_3 = -2, \lambda_4 = 0, \lambda_5 = 0$                   | $\lambda_1 = 0, \lambda_2 = -2.484, \lambda_3 = -1.283, \lambda_4 = 3.7$  |
| 4 | $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = -2.372, \lambda_4 = 3.372,$                         | $\lambda_1 = 0, \lambda_2 = -2.919, \lambda_3 = -1.3, \lambda_4 = 4.218$  |
| 5 | $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = -2.702, \lambda_4 = 3.702,$                         | $\lambda_1 = 0, \lambda_2 = -2.919, \lambda_3 = -1.3, \lambda_4 = 4.218$  |
| 6 | $\lambda_1=0, \lambda_2=-1, \lambda_3=-3, \lambda_4=4$                                          | $\lambda_1 = 0, \lambda_2 = -3.3, \lambda_3 = -1.308, \lambda_4 = 4.616$  |
| 7 | $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = -3.275, \lambda_4 = 4.275$                          | $\lambda_1 = 0, \lambda_2 = -3.668, \lambda_3 = -1.313, \lambda_4 = 4.98$ |
| 8 | $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = -3.531, \lambda_4 = 4.531$                          | $\lambda_1 = 0, \lambda_2 = -4, \lambda_3 = -1.317, \lambda_4 = 5.317$    |

**Tabela 2**. Autovalores do  $K_{1,1,i} \in K_{1,2,i}$ .

## 4. Conclusão

Como trabalhos futuros (em continuidade), deseja-se determinar a fórmula geral do polinômio característico e dos autovalores e autovetores dos tripartidos completos  $K_{1,1,3}$  e  $K_{1,2,3}$ , além dos autovalores mínimos e máximos, bem como outras classes de grafos tripartidos completos.

### Referências

- [1] ALAWN, Nawras A.; AL-SAIDI, Nadia MG; RASHEED, Rashed T. Tripartite graphs with energy aggregation. Boletim da Sociedade Paranaense de Matemática, v. 38, n. 7, p. 149-167, 2020.
- [2] ABREU, Nair Maria Maia de and Del-Vecchio, RR and Vinagre, CTM and Stevanovic, D. Introdução à teoria espectral de grafos com aplicações. Notas em Matemática Aplicada. 25. v. 27. 2007.
- [3] ASGHARSHARGHI, L. and Kiana, D., 2015. On Regular Graphs with Complete Tripartite Star Complements. Ars Comb., 122, pp.431-437.
- [4] BARBOSA, Lucas Pereira; DO NASCIMENTO MARTINS, Victor. Aplicações de Álgebra Linear na Teoria dos grafos. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 7, n. 1, 2020.
- [5] CVETKOVIĆ, Dragoš M.; ROWLINSON, Peter; SIMIC, Slobodan. Eigenspaces of graphs. Cambridge University Press, 1997.
- [6] SZWARCFITER, J. L. Grafos e algoritmos computacionais (Graphs and Computational Algorithms). Editora Campus. Brazil. 1986.



