Equações de Buckley-Leverret com termos Difusivos e Dispersivos

Prof. Dr. Raphael de O. Garcia Profa. Dra. Graciele P. Silveira

DCA/UNIFESP - Campus Osasco; DFQM/UFSCar - Campus Sorocaba

São Carlos, 30 de julho de 2024

Sumário

- Objetivo: Escoamento bifásico em meio poroso
- Modelagem Matemática: Equações de Buckley-Leverret
- Métodos Numéricos: WENO-5, DF-4 e RK-3 TVD;
- Simulações: Extração de petróleo;
- Conclusões e Referências.

Introdução

- Um problema central da indústria de petróleo;
- Escoamento de fluidos bifásicos, em tubulações preenchidas por um meio poroso;
- Injeção de água saturada para a manutenção da extração do petróleo;
- Equações Diferenciais Parciais: Buckley e Leverret (1942);

Introdução

- Atualmente: adição de termos difusivos e dispersivos;
- Aumento de complexidade nas soluções;
- Soluções Numéricas Apropriadas;
- Desenvolvimento de códigos próprios.

Equações de Buckley-Leverret Modificadas

$$q_t + f(q)_x = \varepsilon q_{xx} + \varepsilon^2 \kappa q_{xxt}, \tag{1}$$

em que

- $f(q) = \frac{q^2}{q^2 + a(1 q^2)}$ é o fluxo de água;
- 1 f(q) é o fluxo de óleo;
- 0 < a < 1 representa a porosidade do meio;
- ε é o coeficiente de difusibilidade;
- κ o coeficiente dispersivo;

Condição Inicial

O restabelecimento do fluxo de óleo, da esquerda para a direita, pode ser feito preenchendo parte da tubulação à esquerda com água saturada. Tal procedimento é descrito pela seguinte função:

$$q(x,0) = 1 - \left[\frac{1 + \tanh\left(\alpha(x-a)\right)}{2}\right],\tag{2}$$

em que a é um parâmetro associado a posição da função e α corresponde ao quão rápido a função varia de zero a um.

Equações de Buckley-Leverret Modificadas

Do ponto de vista de métodos numéricos, considera-se a Equação (1) como

$$(q - \varepsilon^2 \kappa q_{xx})_t + f(q)_x = \varepsilon q_{xx}, \tag{3}$$

e então

$$\begin{cases} p_t + f(q)_x = \varepsilon q_{xx} \\ p = \left(q - \varepsilon^2 \kappa q_{xx}\right) \end{cases}$$
 (4)

Métodos Numéricos

Discretização Espacial

- Termo Advectivo (não-linear): Esquema Essencialmente Não Oscilatório de ordem 5 (WENO-5);
- Termos Difusivos: Esquema de Diferenças Finitas Centrado de ordem 4;

Métodos Numéricos

Discretização Temporal

- Método de Runge-Kutta de três estágios (RK3-TVD);
- Propriedade: Valor Total Decrescente (TVD).

Discretizações

- Domínio espacial $x \in [-1, 1]$ com 128 subintervalos;
- \bullet Domínio temporal $t \in [0 \; , \; 0, 3125],$ com 200 subintervalos;
- Espaçamentos: $\Delta x = 1/64$ e $\Delta t = 1/640$;
- CFL: $\Delta t = 0, 1\Delta x$

Parâmetros

Tabela 1 - Parâmetros utilizados para cada exemplo.

Exemplos	ε	κ
ex1	0,00	0,00
ex2	0,04	0,00
ex3	0,04	0,90
ex4	0,04	0,95
ex5	0,04	0,97
ex6	0,04	0,98
ex7	0,04	0,99

Simulações

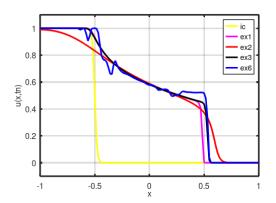


Figura: Exemplos de simulações conforme parâmetros da Tabela 1.

Simulações



Figura: Exemplos de simulações conforme parâmetros da Tabela 1.

Conclusões

- Escoamento bifásico;
- Mistura entre água saturada e petróleo, em meio poroso;
- Métodos Robustos: capazes de representar a difusão e a dispersão;
- Dispersão inibe a Difusão;

Referências

- GARCIA, R. O., SILVEIRA, G. P., Essentially non-oscillatory schemes applied to Buckley-Leverett equation with diffusive term. Latin-American of Journal Computing, v. 11, n. 1, p. 42-55, 2024.
- JIANG, G-S., SHU, C-W., Efficient Implementation of Weighted ENO schemes. **Journal of Computational Physics**, v. 126, p. 202-228, 1996.